Corrections to finite-size scaling for quantum chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L469
(http://iopscience.iop.org/0305-4470/17/9/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:37

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Corrections to finite-size scaling for quantum chains

G V Gehlen, C Hoeger and V Rittenberg
Physikalisches Institut, Universität Bonn, Nussallee 12, 5300 Bonn, West Germany

Received 26 March 1984

Abstract

We compute the leading order correction to the energy gap at the critical point for the anisotropic Ising and the Z_{3} Potts quantum chains. Periodic, anti-periodic and free boundary conditions are considered. For the Ising case the corrections are independent of the boundary conditions. In the Z_{3} case the correction is the same for anti-periodic and free boundary conditions but is $\frac{2}{5}$ smaller for the periodic case. We have no explanation for this phenomenon.

Derrida and de Seze (1982) and Luck (1982) have considered two-dimensional lattices with isotropic interactions, infinite in the first direction and of finite size N in the second one. They have suggested that if one studies the behaviour at large N of the correlation length ξ_{N} in the infinite direction at the critical point T_{c},

$$
\begin{equation*}
\xi_{N}\left(T_{\mathrm{c}}\right)=A_{0} N\left(1+A_{1} N^{-\sigma}+\ldots\right) \tag{1}
\end{equation*}
$$

the coefficient A_{0} should have a physical meaning:

$$
\begin{equation*}
A_{0}=1 / \pi \eta \tag{2}
\end{equation*}
$$

where η is the critical exponent describing the anomalous dimension of the spin-spin correlation at the critical point. This idea was further extended by Nightingale and Blöte (1983) to anisotropic systems.

In this letter we ask a similar question concerning quantum chains, motivated by the fact that performing an anisotropic limit of $\infty \times N$-site two-dimensional spin systems leads to N-site quantum chains (Fradkin and Susskind 1978). Then the energy gap of the quantum chain (the difference between the two lowest energy eigenvalues) corresponds to ξ_{N}^{-1} of equation (1). Quantum chains have also attracted considerable interest themselves, see e.g. Barouch and McCoy (1971a, b).

We consider a Hamiltonian $H(\lambda)$ with N sites depending on a parameter λ such that for $N \rightarrow \infty$ the energy gap vanishes at $\lambda=\lambda_{\text {cr }}$. In analogy with equation (1) for large N we may expect

$$
\begin{equation*}
N E_{N}\left(\lambda_{\mathrm{cr}}\right)=B_{0}\left(1+B_{1} N^{-\omega}+\ldots\right) \tag{3}
\end{equation*}
$$

with B_{0} having a physical meaning. If so its value should be independent of the boundary conditions. In order to get an answer to our question we consider two examples.

We first consider the well known Hamiltonian (Katsura 1962)

$$
\begin{equation*}
H=-\sum_{i=1}^{N} \sigma_{i}^{z}-\lambda \sum_{i=1}^{N}\left[\frac{1}{2}(1+\gamma) \sigma_{i}^{x} \sigma_{i+1}^{x}+\frac{1}{2}(1-\gamma) \sigma_{i}^{y} \sigma_{i+1}^{y}\right] \tag{4}
\end{equation*}
$$

where $\sigma_{i}^{x}, \sigma_{i}^{y}$, and σ_{i}^{z} are Pauli matrices. This model has for $\gamma \neq 0$ an Ising type phase transition at $\lambda=1$. We take three types of boundary conditions: (A) periodic, (B) anti-periodic, and (C) free. The analytic result for cases (A) and (B) has been given by Katsura (1962, equations (2.26), (2.27)):

$$
\begin{align*}
& N E_{N}^{(\mathrm{A})}(\lambda=1)=N \sum_{k=0}^{N-1}\left(\Lambda\left(k+\frac{1}{2}\right)-\Lambda(k)\right) \tag{5}\\
& N E_{N}^{(\mathrm{B})}(\lambda=1)=-N E_{N}^{(\mathrm{A})}(\lambda=1)+N \Lambda\left(\frac{1}{2}\right) \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda(k)=\left\{[\cos (2 \pi k / N)-1]^{2}+\gamma^{2} \sin ^{2}(2 \pi k / N)\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

Rewriting equation (5) in the form
$N E_{N}^{(\mathcal{A})}(\lambda=1)=\frac{1}{2} N\left(\Lambda\left(\frac{1}{2}\right)+\Lambda\left(N-\frac{1}{2}\right)+\sum_{k=1}^{N-1}\left(\Lambda\left(k-\frac{1}{2}\right)+\Lambda\left(k+\frac{1}{2}\right)-2 \Lambda(k)\right)\right)$
and expressing the sum in equation (8) as an integral over the second derivative of Λ, we find in the leading order of N

$$
\begin{equation*}
N E_{N}^{(\mathrm{A})}(\lambda=1)=N E_{N}^{(\mathrm{B})}(\lambda=1)=\frac{1}{2} \gamma \pi . \tag{9}
\end{equation*}
$$

For case (C) we have done the calculations numerically and the results are shown in figure 1 for three values of $\gamma(\gamma=0.5,0.7$ and 1$)$. One sees that the values for $N E_{N}$

Figure 1. $2(\gamma \pi)^{-1} N E_{N}(\lambda=1)$ as a function of $1 / N . E_{N}(\lambda=1)$ represents the energy gap at the critical point for the Ising Hamiltonian given by equation (4).
converge nicely to the value $\frac{1}{2} \gamma \pi$. One concludes that for the Hamiltonian given by equation (4) the finite-size scaling correction term B_{0} in equation (3) is independent of the boundary conditions and might have a physical interpretation similar to equation (2) ($\eta=\frac{1}{4}$ in this case).

We now turn to a second example which is the Z_{3} Potts Hamiltonian (Elitzur et al 1979)

$$
\begin{equation*}
H=\sum_{i=1}^{N} \Omega_{i}-\frac{1}{3} \lambda \sum_{i=1}^{N}\left(\Gamma_{i} \Gamma_{i+1}^{+}+\Gamma_{i}^{+} \Gamma_{i+1}\right) \tag{10}
\end{equation*}
$$

where

$$
\Gamma_{i}=\left(\begin{array}{lll}
0 & 1 & 0 \tag{11}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad \Omega_{\mathrm{t}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Here again the energy gap vanishes for $\lambda=1$. We consider the boundary conditions: (A) periodic ($\Gamma_{N+1}=\Gamma_{1}$), (B) 'anti-periodic' ($\Gamma_{N+1}=e^{2 \pi i / 3} \Gamma_{1}$) and (C) free ($\Gamma_{N+1}=0$) and naively expect the finite-size scaling correction term B_{0} in equation (3) to be independent of the boundary conditions.

We have computed numerically the values of $N E_{N}$ for the three cases and the values are given in table 1. To our surprise the values obtained for the periodic boundary condition (case (A)) are very different from those for the other two cases. We have estimated the limiting values of $2 \pi^{-1} N E_{N}(\lambda=1)$ in the three cases (we took units of $\frac{1}{2} \pi$ as suggested by equation (9)) and obtained

case (A)	$(2 / \pi) B_{0}=0.46184$
case (B)	$(2 / \pi) B_{0}=1.15469$
case (C)	$(2 / \pi) B_{0}=1.15477$.

The estimates were made by computing Vanden Broeck and Schwartz (1979) approximants and looking for their stability. The errors are probably in the last two

Table 1. $N E_{N}(\lambda=1)$ for the Z_{3} Potts Hamiltonian. The boundary conditions A, B, and C are explained in the text.

	Boundary condition		
N	A	B	C
2	0.79278959833	1.51661148	1.28186105
3	0.76031444641	1.63729979	1.41152568
4	0.74839194485	1.68856825	1.48682619
5	0.74244107765	1.71647391	1.53643261
6	0.73893747631	1.73392341	1.57178961
7	0.73664928047	1.74584580	1.59838315
8	0.73504469498	1.75450716	1.61918215
9	0.73385979271	1.76108819	1.63593877
10	0.73294985533		1.64975646
11	0.73222934256		
12	0.73164463839		
13	0.73116051504		

digits. The values for the last two boundary conditions coincide but they are different by a factor $\frac{2}{5}$ from the periodic boundary condition case (where $B_{0} \approx \frac{1}{2} \pi \sqrt{3} \eta ; \eta=\frac{4}{15}$ in the Z_{3} case).

We have no simple explanation to this puzzle especially since it is the first time we know of when Z_{2} and Z_{3} symmetric systems behave in such a different way. This might be due to the existence of a zero mode in one case and the absence of zero modes in the other case.

References

Barouch E and McCoy B M 1971a Phys. Rev. A 3786

- 1971b Phys. Rev. A 32137

Derrida B and De Seze J 1982 J. Physique 43475
Elitzur S, Pearson R B and Shigemitsu J 1979 Phys. Rev. D 193698
Fradkin E and Susskind L 1978 Phys. Rev. D 172637
Hamer C J and Barber M N 1980 J. Phys. A: Math. Gen. 13 L169
Katsura S 1962 Phys. Rev. 1271508
Luck J M 1982 J. Phys. A: Math. Gen. 15 L169
Nightingale P and Blöte H 1983 J. Phys. A: Math. Gen. 16 L657
Vanden Broeck J-M and Schwartz L W 1979 SIAM J. Math. Anal. 10658

