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LETTER TO THE EDITOR 

Corrections to finite-size scaling for quantum chains 
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Physikalisches Institut, Universitat Bonn, Nussallee 12, 5300 Bonn, West Germany 

Received 26 March 1984 

Abstract. We compute the leading order correction to the energy gap at the critical point 
for the anisotropic [sing and the Z,  Potts quantum chains. Periodic, anti-periodic and free 
boundary conditions are considered. For the Ising case the corrections are independent 
of the boundary conditions. In the Z ,  case the correction is the same for anti-periodic 
and free boundary conditions but is 5 smaller for the periodic case. We have no explanation 
for this phenomenon. 

Derrida and de Seze (1982) and Luck (1982) have considered two-dimensional lattices 
with isotropic interactions, infinite in the first direction and of finite size N in the 
second one. They have suggested that if one studies the behaviour at large N of the 
correlation length tN in the infinite direction at the critical point T,, 

&N( T,) = AoN( 1 +AI N-" +. . .) (1) 

Ao= I / T T  (2) 

the coefficient A. should have a physical meaning: 

where r ]  is the critical exponent describing the anomalous dimension of the spin-spin 
correlation at the critical point. This idea was further extended by Nightingale and 
Blote (1983) to anisotropic systems. 

In this letter we ask a similar question concerning quantum chains, motivated by 
the fact that performing an anisotropic limit of 00 x N-site two-dimensional spin systems 
leads to N-site quantum chains (Fradkin and Susskind 1978). Then the energy gap 
of the quantum chain (the difference between the two lowest energy eigenvalues) 
corresponds to 6;' of equation (1). Quantum chains have also attracted considerable 
interest themselves, see e.g. Barouch and McCoy (1 97 1 a, b). 

We consider a Hamiltonian H ( A )  with N sites depending on a parameter A such 
that for N + 00 the energy gap vanishes at A = Acr. In analogy with equation (1 )  for 
large N we may expect 

(3) 
with Bo having a physical meaning. If so its value should be independent of the 
boundary conditions. In order to get an answer to our question we consider two 
examples. 

NEN(Acr) = Bo( 1 + Bl N-" +. . .) 

We first consider the well known Hamiltonian (Katsura 1962) 
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where U;, 07, and af are Pauli matrices. This model has for y # 0 an Ising type phase 
transition at A = 1. We take three types of boundary conditions: (A) periodic, (B) 
anti-periodic, and (C) free. The analytic result for cases (A) and (B) has been given 
by Katsura (1962, equations (2.26), (2.27)): 

N-l  

NE‘,)(A = 1)= N ( A ( k + i ) - A ( k ) )  
k = O  

NEE’(A = 1)  = -NEJvA’(A = 1) + NA(4) 
where 

A ( k )  = {[cos(27rk/N)- 112 + y 2  ~ i n ~ ( 2 7 r k / N ) } ” ~  

Rewriting equation (5) in the form 
N-l  

NE‘,’(A = l ) = $ N  A($)+A(N-$)+  (A(k-$)+A(k+$)-2h(k)) 
k = l  

and expressing the sum in equation (8) as an integral over the second derivative of A, 
we find in the leading order of N 

NE‘,’(A = 1) = NEE’(A = 1) =$yr. (9) 
For case (C) we have done the calculations numerically and the results are shown in 
figure 1 for three values of y ( y  = 0.5, 0.7 and 1). One sees that the values for NEN 

0.90 

1/20 1/12 1/10 118 117 116 
1IN 

Figure 1.  2 ( y ~ ) - ’ N E , ~ ( h  = 1) as a function of 1/N. E,(h  = 1) represents the energy gap 
at the critical point for the Ising Hamiltonian given by equation (4). 



Letter to the Editor L47 1 

converge nicely to the value ;-yr. One concludes that for the Hamiltonian given by 
equation (4) the finite-size scaling correction term Bo in equation (3) is independent 
of the boundary conditions and might have a physical interpretation similar to equation 
( 2 )  (7  = 4 in this case). 

We now turn to a second example which is the Z3 Potts Hamiltonian (Elitzur et a1 
1979) 

N N 
H = 1 R,  +A 1 (rir:+l +r+ri+,) 

i =  I 1=I 

where 

0 1 0  0 0 0  
r ,=  o o I 

Here again the energy gap vanishes for A = 1. We consider the boundary conditions: 
(A) periodic ( r N + ,  = rl), (B) ‘anti-periodic’ ( r N + l  = e2Ti’3Yl) and (C) free ( r N + ]  = 0) 
and naively expect the finite-size scaling correction term Bo in equatiofl (3) to be 
independent of the boundary conditions. 

We have computed numerically the values of NEN for the three cases and the 
values are given in table 1. To our surprise the values obtained for the periodic 
boundary condition (case (A)) are very different from those for the other two cases. 
We have estimated the limiting values of 2rr-’NEN(A = 1) in the three cases (we took 
units of fr as suggested by equation (9)) and obtained 

case (A) (2/ r ) B 0  = 0.46 184 

case (B) ( 2 / ~ ) B o =  1.15469 

case (C) (2/ r)Bo = 1.15477. (12) 
The estimates were made by computing Vanden Broeck and Schwartz (1979) 
approximants and looking for their stability. The errors are probably in the last two 

Table 1. NE,(A = 1) for the Z,  Potts Hamiltonian. The boundary conditions A, B, and 
C are explained in the text. 

~~ 

Boundary condition 

N A B C 

2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 

0.792 789 598 33 
0.760 3 I4 446 41 
0.748 391 944 85 
0.742 441  077 65 
0.738 937 476 3 1 
0.736 649 280 47 
0.735 044 694 98 
0.733 859 792 71 
0.732 949 855 33 
0.732 229 342 56 
0.73 I 644 638 39 
0.731 16051504 

1.51661148 
1.637 299 79 
1.688 568 25 
1.716473 91 
1.733 923 41 
1.745 845 80 
1.754 507 16 
1.761 088 19 

~ 

1.281 861 05 
1.411 52568 
1.486 826 19 
1.536 432 61 
1.571 78961 
1.598 383 15 
1.619 182 15 
1.635 938 77 
1.649 756 46 
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digits. The values for the last two boundary conditions coincide but theysre different 
by a factor $ from the periodic boundary condition case (where Bo = i d 3 7 7  ; 7 = E  in 
the 2, case). 

We have no simple explanation to this puzzle especially since it is the first time 
we know of when 2, and 2, symmetric systems behave in such a different way. This 
might be due to the existence of a zero mode in one case and the absence of zero 
modes in the other case. 

4 .  
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